Ir al contenido principal

VECTOR

Un vector tiene tres características esenciales: módulo, dirección y sentido. Para que dos vectores sean considerados iguales, deben tener igual móduloigual dirección e igual sentido.
Los vectores se representan goemétricamente con flechas y se le asigna por lo general una letra que en su parte superior lleva una pequeña flecha de izquierda a derecha como se muestra en la figura. 

vector


Imagen 2: Vectores con igual módulo, pero distintas direcciones
Imagen 2: Vectores con igual módulo, pero distintas direcciones

Módulo: está representado por el tamaño del vector, y hace referencia a la intensidad de la magnitud ( número). Se denota con la letra solamente A o |A|
  • Vectores de igual módulo. Todos podrían representar, por ejemplo, una velocidad de 15 km/h, pero en distintas direcciones, por lo tanto todos tendrían distinta velocidad.
  • Vectores de distinto módulo. Se espera que el vector de menor tamaño represente por ejemplo una velocidad menor que la de los demás.
  • Vectores de distinto módulo: Así, los vectores de la figura podrían representar velocidades de 20 km/h, 5 km/h y 15 km/h, respectivamente.


Imagen 3: Muestra tres vectores de distinto módulo, pero igual dirección y sentido
Imagen 3: Muestra tres vectores de distinto módulo, pero igual dirección y sentido

 Dirección: corresponde a la inclinación de la recta, y representa al ángulo entre ella y un eje horizontal imaginario ( ver figura 2) . También se pueden utilizar los ejes de coordenadas cartesianas (x, y y z) como también los puntos cardinales para la dirección.
  • Vectores de distinto módulo: Dos vectores tienen la misma dirección cuando la inclinación de la recta que los representa es la misma, es decir, cuando son paralelos.
  • Vectores de igual dirección: Sin importar hacia dónde apuntan o cuál es su tamaño, los vectores de la figura son paralelos, por lo que tienen la misma dirección.       (figura 3)






Imagen 4: Representa dos vectores con igual módulo, dirección, pero sentidos contrarios.
Imagen 4: Representa dos vectores con igual módulo, dirección, pero sentidos contrarios.


















Sentido: está indicado por la punta de la flecha. (signo positivo que por lo general no se coloca, o un signo negativo). No corresponde comparar el sentido de dos vectores que no tienen la misma dirección, de modo que se habla solamente de vectores con el mismo sentido o con sentido opuesto.




Comentarios

Publicar un comentario

Entradas populares de este blog

REPRESENTACIÓN ALGEBRAICA DE UN VECTOR

Componentes rectangulares Se basa en escribir un vector como suma de otros dos los cuales son ortogonales (perpendiculares entre si), para ello se apoya en el plano cartesiano, los vectores que se suman estén en alguno de los ejes. Las componentes rectangulares se llaman así porque se fundamenta en la construcción de un rectángulo. imagen 9: Todo vector se puede escribir como la suma de otro dos ortogonales En la imagen se puede ver que el vector  A , no es más que la suma de un vector en el eje  "X"  y otro en el eje  "Y"  . Cada uno de estos vectores se le conoce con el nombre de componente, asi el vector  Ax  es la componente  "X"  del vector  A. Para poder escribir correctamente estos vectores debemos introducir los vectores unitarios, los cuales se detallan a continuación. V ectores Unitarios Imagen 10: Vector escrito según sus componentes Se caracterizan porque su módulo es 1, por lo...

REPRESENTACIÓN GEOMÉTRICA DE UN VECTOR

Ya has aprendido que los vectores son definidos a través de tres características, que son:  módulo, dirección y sentido.  Aunque su posición en el espacio no es uno de los componentes para definir lo, el estudio de los vectores se facilita si los ubicamos en un sistema de coordenadas cartesianas que nos ayude a tener mayor precisión, de manera de poder representarlos de una forma algebraica como de una manera geométrica. Imagen 5: Muestra la traslación de los vectores al origen Una de las características es que cuando tenemos un vector que no está en el origen de nuestro plano cartesiano, lo podemos trasladar, de manera que siempre el origen sea el (0,0) y así facilitar nuestros cálculos, pues sólo necesitaremos el punto final para determinarlo. En el dibujo anterior hemos llamado  p  al vector  CD  trasladado. Por otro lado hemos llamado  q  al vector AB  trasladado. Si sus puntos de origen se trasladan al origen, ver...

COMPONENTES DE UN VECTOR

A continuación una animación para estudiar y jugar sobre la suma, resta y componentes de un vector en un plano cartesiano Animación para estudiar los vectores. Haz click sobre ella Cálculo del las componentes de un vector Como no hemos dado cuenta para sumar o restar y operar con los vectores es necesario escribirlo en sus componentes, para ello utilizaremos las proporciones trigonométricas. Entonces al aplicar estas proporciones tenemos para el vector A que: Componente  x  es  5 cos 30 Componente  y  es  5 se n  30 El vector  A  según sus componentes es Definimos el producto punto o producto escalar de  a  y  b ,y lo escribimos  a·b  , como el número real Recordemos que: cos = ady / hip sen = op / hip tg = op / ady Cálculo de la dirección de un vector Dibujar el siguiente vector:  A = (3,-2) Al observar el dibujo del vector  A ...